Mark Scheme 4725 January 2007

Mark Scheme

4725

4725	Mark	Scheme		State correct value Sensible attempt at multiplication	
1.	(i) <i>a</i> = -3	B1	1	State correct value	Y.CO
	(ii) $2a - 3 = 7$ or $3a - 6 = 9$	M1		Sensible attempt at multiplication	YM7
	<i>a</i> = 5	A1	2	Obtain correct answer	
			3		
2.		M1		Attempt to equate real and	
				imaginary parts of $(x + iy)^2$ and 15	
	$x^2 - y^2 = 15$ and $xy = 4$	A1 A1		+8i	
		M1		Obtain each result	
		DM1		Eliminate to obtain a quadratic in x^2	
	$\pm (4+i)$	A1	6	or y^2	
			6	Solve to obtain $x = (\pm)4$, or $y =$	
				(±)1	
				Obtain only correct two answers as complex numbers	
3.		M1		Expand to obtain $r^3 - r$	
		M1		Consider difference of two standard results	
	$\frac{1}{4}n^2(n+1)^2 - \frac{1}{2}n(n+1)$	A1		Obtain correct unfactorised answer	
		M1		Attempt to factorise	
		A1		Obtain factor of $\frac{1}{4}n(n+1)$	
	$\frac{1}{4}n(n-1)(n+1)(n+2)$	A1	6	Obtain correct answer	
			6		
4.	(i)	B1		Circle	
		B1		Centre (1, -1)	
		B1	3	Passing through (0, 0)	
	(ii)	B1		Sketch a concentric circle	
		B1		Inside (i) and touching axes	
		B1	3	Shade between the circles	
5.	(i)	B1	1	Show given answer correctly	

100	•
Jan	

				mm y	1
4725	Mark	Scheme		Jan Jan Jan	5
	(ii) $-1\pm i\sqrt{3}$	M1 A1		Attempt to solve quadratic equation or substitute $x + iy$ and equate real and imaginary parts Obtain answers as complex numbers	5
	(iii)	A1 B1 B1 B1	3	Obtain correct answers, simplified Correct root on x axis, co-ords. shown Other roots in 2^{nd} and 3^{rd} quadrants Correct lengths and angles or co-	
			7	ordinates or complex numbers shown	
6.	(i)	B1		Correct expression for u_{n+1}	
		M1		Attempt to expand and simplify	
	$u_{n+1} - u_n = 2n + 4$	A1	3	Obtain given answer correctly	
	(ii)	B1		State $u_1 = 4$ (or $u_2 = 10$) and is divisible by 2	
		M1		State induction hypothesis true for	
		M1		<i>u</i> _n	
		A1		Attempt to use result in (ii)	
		A1	5	Correct conclusion reached for u_{n+1}	
			8	Clear, explicit statement of induction conclusion	
7.	(i) $\alpha + \beta = -5$ $\alpha\beta = 10$	B1 B1	2	State correct values	
	$(ii)\alpha^2 + \beta^2 = 5$	M1		Use $(\alpha + \beta)^2 - 2\alpha\beta$	
		A1	2	Obtain given answer correctly, using value of -5	
	(iii)	B1		Product of roots = 1	
		M1		Attempt to find sum of roots	
		A1		Obtain $\frac{5}{10}$ or equivalent	
	$x^2 - \frac{1}{2}x + 1 = 0$	B1ft	4	Write down required quadratic	
			8	equation, or any multiple.	

4725	Mark	Scheme		Factor of $(r+1)$ found
8.	(i)	M1		Factor of $r!$ or $(r + 1)!$ seen
		A1		Factor of $(r+1)$ found
	$(r+1)^2 r!$	A1	3	Obtain given answer correctly
	(ii)	M1		Express terms as differences using
		A1		(i)
		M1		At least 1 st two and last term correct
	(n+2)! - 2!	A1	4	Show that pairs of terms cancel
	(iii)	B1ft	1	Obtain correct answer in any form
			8	Convincing statement for non- converging, ft their (ii)
9.		M1		For at least two correct images
	$ \begin{vmatrix} (i) \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \end{pmatrix} $	A1	2	For correct diagram, co-ords.clearly written down
	(ii) 90^0 clockwise, centre origin	B1 B1		Or equivalent correct description
	$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$	B1	3	Correct matrix, not in trig form
	(iii) Stretch parallel to <i>x</i> -axis, s.f. 3	B1 B1		Or equivalent correct description, but must be a stretch for 2 nd B1
	$\left(\begin{array}{c}3 \\ 0\end{array}\right)$		4	
		B1 B1		Each correct column
			9	

725	Mark Scheme		Show correct expansion process for 3 x 3
10. (i)	M1		Show correct expansion process for
	M1		3 x 3
$\Delta = \det \mathbf{D} = 3a - 6$	A1		Correct evaluation of any 2 x 2 det
	M1		Obtain correct answer
	A1		Show correct process for adjoint
	B1		entries
$\mathbf{D}^{-1} = \frac{1}{\Delta} \begin{pmatrix} 3 & -2 & 4 \\ -3 & a & -2a \\ -3 & a & a & -6 \end{pmatrix}$	A1	7	Obtain at least 4 correct entries in
(-5 u u-6)			adjoint
(ii) $\frac{1}{\Delta} \begin{pmatrix} 5\\ 2a-9\\ 5a-15 \end{pmatrix}$	M1		Divide by their determinant
$\begin{pmatrix} y & x \\ za - y \\ 5a - 15 \end{pmatrix}$	A1A1A1 ft all 3	4	Obtain completely correct answer
		11	
			Attempt product of form D ⁻¹ C , or eliminate to get 2 equations and solve Obtain correct answers, ft their inverse